PHYS 334 Exam #2

Name	Solution 04/06/2022
Choose th	e right answer or fill in the blank.
1. [20 pts]	
a)	A Carnot engine can convert 100% heat into useful work. [True, False]
b)	A Joule-Thomson Process is where the coolant is cooled below the temperature
	of
	[[Environment, Hot reservoir, Cold reservoir]
]
c)	The Joule-Thomson Process does not work for
	[Liquid, High density gas, Ideal gas]
d)	Total energy needed to create a system from nothing and put it into the
	environment is called
	[Enthalpy, Helmholtz free energy, Gibbs free energy]
e)	If a system is in a good thermal contact with the environment, but is in
	mechanical and diffusion isolation, its free energy is
	minimum.
	[Helmholtz , Gibbs, Grand]
f)	If a system is in a good thermal and mechanical contacts with the environment,
	but is in diffusion isolation, its free energy is minimum.
	[Helmholtz, Gibbs, Grand]
g)	If a system is in a good thermal and diffusion contacts with the environment,
	but is in mechanical isolation, its free energy is minimum.
	[Helmholtz, Gibbs, Grand]
h)	The slope of the phase boundary between ice and water is
	[Positive, negative , zero]
i)	You can the melting point of ice by lowering the pressure.
	[lower, raise , not change]
j)	If pressure and temperature are below the, you can get gas from
	solid phase of the substance directly.
	[critical point, Standard values, triple point]

Data for water: Latent Heat of fusion = 333 J/g Latent heat of evaporation = 2400 J/g Heat Capacity =4.186 J/g/K

Explain your answer and show your work for full credit.

- 2. A power plant produces 1.5 GW of electricity at an efficiency of 35%.
 - a) [5 Pts] Find the rate of expelled waste heat. Similar to Problem 4.3 Since $e = W/Q_h = W/(Q_c + W) => Q_c + W = W/e => Qc = W (1/e -1)$ As $Q_c + W = Q_h$ where Q_c is the heat expelled to cold reservoir, that is waste heat. $=> Q_c = 1.5 \text{ GW}^*(1/.35-1) = 2.786 \text{ GW}$
 - b) [5 Pts] Suppose that all waste energy is dumped into river and river water is evaporated. Find the rate of water evaporation.

Since Q = mL => m = Q/L = 2.786x10⁹ J/s / 2400x10³ J/kg =1.16x10³ kg/s

- 3. The ground state of Hydrogen atom has energy -13.6 eV and the 2nd excited state has energy of -1.5 eV. The ground state has only one while 2nd excited state has actually 9 independent states. The Hydrogen atom is kept at room temperature (suppose room temperature is 27°C). Find
 - a) [5 pts] The entropy of the Hydrogen atom in its ground state. $S = kln (\Omega)$, Ground State => $\Omega = 1$ (since only one independent state).

Therefore S = 0

- b) [5 Pts] The Helmholtz free energy of the Hydrogen atom in its ground sate. $\mathbf{F} = \mathbf{U} - \mathbf{TS} = -13.6 \text{ eV}$
- c) [5 Pts] The entropy of the Hydrogen atom in 2^{nd} excited sate. S = k ln(9) = 8.62*10⁻⁵ eV/K *2.197 = 1.89*10⁻⁴ eV/K = 2.7+10-23 J/K
- d) [5 Pts] The change in Helmholtz free energy of the Hydrogen atom if it moves to its 2nd excited sate.

 $\Delta F = \Delta U - T\Delta S = (12.1 - 300 \times 1.89 \times 10^{-4}) = 12.04 \text{ eV}$